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J. Phys.: Condens. Matter 4 (1992) 6797-6810. Printed in the UK 

Second-order vibronic reduction factors for T@(e+tz) 
Jahn-Teller systems 

L D HaUamt, J L Dunn and C A Bates 
Physics Department, The University, Nottingham NG7 2RD, U% 

AbstraeL Second-order vibmnic reduction factors for spin-orbit coupling are derived for 
the stmngiy coupled orthorhombic T@ (e t tz) Jahn-Bller system. The method adopted 
is based on symmetry arguments as described by the authors in earlier papers. The 
symmelry-adapted cubic vibmnic states, which are derived analpically in the companion 
paper, are used in the calculations. This approach gives a significanl improvement in 
lhe accuracy compared to earlier calculations. The relevance of such calculations in the 
modelling of impurity TI ions occupying substitutional sites of Td symmeuy in 111-V 
semiconductors is also discussed, wilh the orlhorhombic GaAs:C?+ Jahn-Teller system 
considered as an example. 

1. Introduction 

It is weU known that the coupling between an impurity ion and the vibrations of 
the surrounding lattice can greatly affect both the sizes and the number of terms 
appearing in the effective Hamiltonian used to describe a perturbation. This shows 
up through the introduction of reduction factors Cor which the labels ‘first-order’ 
or second-order’ denote the order in perturbation theory in which the perturbation 
appears (see, e.g., Ham 1965). However, it is also clear that there are numerous 
examples in which the second-order terms are much more important than first-order 
terms. This arises because the first-order terms decay exponentially with the strength 
of the ion-lattice coupling constant in contrast to some of the second-order terms 
which decay according to the reciprocal of the Jahn-Rller (JT) energy. 

As discussed in the preceding paper (Hallam et al 1992), very little work has been 
undertaken previously to calculate the second-order reduction factors from basic 
JT theories for the T@t,  Jahn-Teller (JT) system and only one calculation for the 
orthorhombic T@(e+t,) ST system has been reported. The latter was undertaken 
by two of the present authors (Dunn and Bates 1989b). However, in that work only 
the ground vibronic states were put into a symmetry-adapted form while the excited 
states used were the much simpler set appropriate to the infinite-coupling limit only. 
Now that a complete set of symmetry-adapted excited states is available in Hallam ef 
al (1!3!32), the calculations of Dunn and Bates (1989b) have been repeated to give a 
more accurate set of results. The object of this paper is to describe these calculations 
and give the results obtained. 
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The paper begins with a summary of the general theory of second-order reduction 
factors using the symmeuy arguments developed by Polinger et a1 (1991) and Bates 
er a1 (1991a.b). This requires the calculation of the sums of overlaps between 
symmetrized oscillator states. As described in Hallam er ai (1992), the states used are 
derived from the transformation method introduced in a series of papers by Bates er 
a1 (1987), D u m  (1988, 1989) and Dunn and Bates (1989a). Spin-orbit coupling is 
then considered in detail as it is the most important perturbation present. Expressions 
for the four reduction factors are obtained using the symmetry-adapted excited states 
of Hallam er 01 (1992). These results are compared with the earlier results of Dunn 
and Bates (1989b) noting in passing that their graphs need correcting as they differ 
by numerical scaling factors from the (correct) formulae quoted there. Second-order 
off-diagonal reduction factors will also be calculated that allow for the mixing via 
the spin-orbit coupling between the ground vibronic and inversion states. Finally, 
the results are used in a new analysis of data obtained previously for the GaPLs.Cr‘+ 
system. 

2. Mathematical background for orbiral triplets with spin-orbit coupling 

As in Polinger er a1 (1991) and Bates el a1 (1991a), we consider an isolated orbital TI 
triplet that is strongly coupled to the vibrations of its surroundings. The electronic 
orbital states may be written in the form Iry); the eigenstates of the system are 
vibronic states which are written in the form INI’y). The labels ry give the 
irreducible representation (IR) and the component of the state while N labels the 
repeated IR of the vibronic state such that their energies E$” increase with increasing 
N. The vibronic eigenstates are written as a sum of products of electronic and 
vibrational states by using a Clebsch-Gordan convolution form (see, e.g., Grilliths 
1962): 

where (CuAXlry) are the Clebsch-Gordan coefficients and IN( r ) A A }  are functions 
of the nuclear coordinates Q and thus represent the phonon states. 

An alternative presentation is given in Hallam (1991) where V-coefficients are 
used instead of Clebsch-Gordan (CG) coeficients. With V-coefficients, the symmetry 
properties are more explicit than with CG coefficients and have the added advantage 
that permutations of the columns mercly affect the overall sign of the coefficients. 
Nevertheless, we continue here to use the CG formalism in line with our earlier work. 

A perturbation V can cause a splitting of the ground vibronic state lory) in first 
order. In second order, the additional splitting can be described by the effective 
Hamiltonian: 

IN c U )  ( N c U1 xH(2)=cc” (U) (N) V. 
N Eu Er 

7d2) depends upon the nuclear as well as the space coordinates. However, as 
the contributions from the summation in (2.2) form a scalar, the symmetry of 
7dZ) depends only on the symmetry within V 8 V. This means that the effective 
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Hamiltonian used to describe the vibronic system can be obtained from the purely 
electronic Hamiltonian by multiplying (V @ V) by the second-order reduction factor 
K g ) ( r k  @ rf) where (Polinger ef af 1991) 

with 

In the above, rk and rf denote the symmetry components of the V s ,  and the 
oscillator overlap integrals are (O(S2)@l [N(A)@}  while the remaining terms give 
numerical factors. Also the 6 r  symbols are written with large square brackets, the 
fictitious angular momentum operator as j (  r) and the dimension of a representation 
with small square brackets (see, e.g., Griliiths 1962). 

For spin-orbit coupling acting as a perturbation within a TI ion (I = l), we take 
V = XI. S so that Tk = r, = T, and also r' = T,. The secondader spin-orbit 
coupling can be written as an effective Hamiltonian in the form (Polinger el al 1991, 
Bates el a1 1991a) 

where LE: and SgL are the second-order orbit and spin operators respectively which 
transform as Mp. (For example, Lgj  = (1/&)(3l: - 2).) From group theory, we 
find that only reduction factors for which M = A,, E, TI, Tz occur in this problem. 

may be obtained directly from (2.3) with the result (Polinger ef ai 1991) 

Kg)(Tl 8 TI) = +3RA, +  RE + 9&, + 9 k 2  

Kg)(T, @TI) = -6RA, - 12RE + 9&, + 9Rr, 

Kg)(Tl @TI) = +6RA, - 6RE + 9%, - 9Rr, 

K$)(Tl @TI) = -6RA, + 6 R ,  + 9&, - 9Rr, 

The 

(2.6) 

where the parameters RA involve sums of terms involving overlap integrals (such as 
{O(T,)T,[[N(A,)T,}) divided by an energy. Expressions for the RA are given in 
Polinger et a1 ((1991), equation (2.28)). 

The above general formulae for the secondader reduction factors for the spin- 
orbit coupling acting within a T, orbital triplet are valid for any type of vibronic 
system. The differences between the different systems are contained entirely within 
the RA and these in turn depend upon the details of the ground and all the excited 
vibronic states. We apply now these general results to the T @ ( e  t tz) JT SyStem. 
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3. Calculation of the second-order reduction factors for T@ (e+%) systems 

3.1. Contributions from within the vibronic triplet only 

In the above formulation, we require expressions for the ground and all the excited 
vibronic states. This is generally a difficult problem for all JT systems except T@ e and 
the only method available appears to be that based on the transformation method 
developed by two of the authors. The preceding paper (table 1 of Hallam er 01 (1992)) 
gives the required vibronic states for the T@ (e f tz) system. From these vibronic 
states it is necessary to project out a phonon part of the required symmetry so that 
the reduced matrix elements of the phonon overlaps can be obtained. From these 
results the relevant RA can then be calculated. 

The phonon state IN( r )@)  has overall symmetry @ and is derived from the 
excited vibronic state labelled by N of symmetry r. In order to derive the phonon 
state with the required symmetry, the appropriate vibronic state is expanded using 
(2.1). Thus in general we have 

L D Hallam et a1 

(3.1) 

The vibronic states given in Hallam ef a1 (1992) contain phonon excitations via the 
unitary transformation operators U;.  They may thus also be expanded in the form 
of (3.1) above. For example, from table 1 of Hallam el nl (1992), we have, for the 
vibronic state I+Tiy) the comparable relation 

I+Tiy) = ( N , , / f i )  { 1.) [-(-1)qU110~~~4r556'} + (-l)'t"t'Uz10~e~4'5.6')1 
+ ly) [+U310E~z4'5'6'} + (-1)"+' U4IB$c$4*5'6'} 
- ( - 1 ) * U , [ O ~ ~ ( ! 4 ~ 5 ~ 6 ~ }  - (-l)qt'+t U2(01:~~4'5'6*}] 
+ lz) [+U3lOl:ez4'5'6r} - ( - l ) s t~U4~0~c~4'5"6' ] ]}  , (3.2) 

Comparing (3.2) with (3.1) gives simultaneous equations which can be solved to give 
phonon states of the required symmetry properties (Hallam 1991). Care must be 
taken to distinguish between phonon states that derive from vibronic states having 
the same symmetry but different energies. For example, there will be two phonon 
states of the form IN(Tl)nw} since there are two sets of T, vibronic states having 
different energies. 

The reduced matrix elements between phonon states are summarized in table 1. 
These results show that the reduced matrix element (O(T,)T,IIN(A,)T,) vanishes 
and, as a result, RA,(Tl) = 0. Substituting the reduced matrix elements into the 
expressions for the remaining RA gives 
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Table 1. Non-zero reduced matrix elements of the phonon overlaps Superscripts on the 
symmetry labels (e.g. T:) distinguish between states of the same symmetry but different 
enwgy. The funclions gl and gz are given in (3.6) and the normalhing factors in table 3 
of Hallam n ul 119%). 
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The overlaps are defined by 

L D Hallam et a1 

- 
set = eq[-$(IcE/hwE)z - (I<T/%)'l set = exP[-2(I~T/hwT)zl (3.7) 

and the energies are given in table 4 of Hallam et ai (1992). 

3.2 Coupling to lhe inversion level 

For a T, ion, the T@(e + tz) rr system has a vibronic ground state of T, symmetry 
and an inversion level of T, symmetry. So far, only coupling between the ground and 
excited vibronic states has been included in the calculation of second-order reduction 
factors. The contribution from the ground-inversion-level coupling for the spin-orbit 
coupling perturbation (XI. S) has the form 

m 

- E(O(TI)I(XS * S)lO(Tz)lc)(O(T~)kl(Xl. S ) I V i ) ~ ) / ~  

where the inversion splitting 6 = e) - q). From Hallam er 01 (1992), the T, 
ground states are given by 

k= I 

IO(TJ4 = N7(O)(Izy;) + ICY!.) + 12.;) - I d ) )  (3.8) 

and the T, inversion level states by 

IO(Tz)z) = NI~O)(I"Y;) + I d )  - I..;) + I z ~ ) ) .  (3.9) 

This results in an additional contribution of -ger/9 to the value of k2 and so 

h 2 ( T i )  = -4CfA' + f:: + get) (3.10) 

where 

get = ~ ~ , ( O ) ~ , , ( O ) ( ~ , ,  -GI/&. 
Consequently all the secondader reduction factors given in (3.4) should be corrected 
by replacing the original &>(TI) by the expression given in (3.10) above. 

4. The results 

OBrien (1990) writes the effective Hamiltonian for an orbital triplet JT system in the 
symmetry-adapted form: 

'Flee = X z { A ( l . S ) +  ; B E E ( l ) E ( S )  t iB,T(I)T(S) + C1(1+ I ) ]  ( 4 4  

where the coefficients A, BE, B, and C are related to the second-order reduction 
factors defined in (2.5) by 
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Figure 1. The reduction factors A, BE, BT and C plotted as a function of KrlAw for 
the TB(e+tz)  Jr system with g = 0.8 and I<BL = -0.036. The lull cuwes give the 
new results calculaled using the symmetly-adapled excited stater and the broken cuwes 
show the results of Dunn and Baler (1989b) obtained using simple excited slater. 

and where E ( l ) ,  T(1) are orbital operators of the stated symmetry. Plots of A, BE, 
BT and C as a function of KT are shown in figures 1 and 2 taking the ratio 7 of 
the JT energies for e to tt couplings to be 0.8 and 1.2 respectively and the bilinear 
coupling constant ICBL = -0.036 and -0.082 respectively. These values of Ii, 
are chosen to ensure that the orthorhombic minima lie lowest in energy. (A full 
discussion about these parameters is given, for example, in Dunn and Bates (1989b).) 
For small values of ICT, the reduction factors were found to converge rapidly with 
only a few phonon excitations. More excitations were needed for larger values of 
IC,. However, it was found that no difference could be distinguished between graphs 
produced by summing up to L (= M + N )  = 20 and L = 25 phonon excitations 
over the range of couplings displayed. 

Also shown in the figures for comparison purposes are the results obtained from 
the equivalent formulae given in Dunn and Bates (1989b). There simple excited states 
were used that belong to the infinite-coupling limit and that are thus localized in the 
orthorhombic potential energy minima in &-space. (It is necessary to point out that 
there is an error in the plots of the factors ff'- fy in figure 2 of Dunn and Bates 
(1989b). The formulae given in the paper are correct but the plots themselves involve 
fJ8, f2, f3/2, f4/4 and f5 /S  h e a d  of fi, f i ,  f,, f4 and f5 respectively. Thus four 
of the factors are much larger than those shown.) 

As in the case of T@ t2 JT systems described in Dunn er a1 (1990), the magnitudes 
of the reduction factors obtained from the symmetry-adapted cubic states are smaller 
than the equivalent factors obtained with the simple states. This occurs because of the 
greater amount of non-orthogonality between the simple states in moderate coupling. 
O'Brien (1990) has recently published numerical results for the T@ (e + tz) system. 
Unfortunately, the results are not directly comparable with those obtained here as 
they are calculated in the special case of equal coupling, although the same qualitative 
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Fkum 2. The same as figure 1 excepl that 7 = I .2 and I C B ~  = -0.082 

behaviour is obsemd. Although the second-order reduction factors obtained using 
the improved symmetry-adapted states are reduced in magnitude compared with those 
obtained using simple states, they still dominate the first- order factors (Dunn and 
Bates 1989b) for I i ,  > 1.0. 

It is clear that the dependence of the reduction factors on KT for the 
orthorhombic T@ (e + tz) JT system are very similar to those of T@ tz. On comparing 
figures 1 and 2 with figure I(b) of Bates er a1 (1991a), we see that A is always positive 
and peaks at about = 0.7 while BE. BT and C are all negative. For both 
systems, lBTi > > ICI. Also, the values of all four reduction factors are 
approximately the same for the two JT systems. 

It is not possible to derive analytical expressions for the asymptotic behaviour of 
the reduction factors in strong coupling even though the simple excited states may be 
used. There are a number of reasons for this. Among them are that the factors 'p. 
and 'p,, arising from the very important bilinear term, cannot be sensibly replaced by 
unity because the concept of wells will disappear. Also, both KE and KT appear in 
different combinations in the relevant polynomials and the exponents and the use of 
the parameter q does not help. 

For the T@t, system, anisotropy corrections were introduced by Bates el al 
(1991a) in an approximate way, with the result (shown in their figure l(u)) that 
there was better agreement between the analytical calculations and the numerical 
results of O'Brien (1990). Unfortunately, anisotropy is much more complicated in the 
T@ (e + tz) system and we have consequently been unable to add such corrections 
here. 

5. Off-diagonal reduction lactors 

In many strongly coupled vibronic systems, there is an inversion level very close to 
the ground state and certain perturbations can cause significant admixtures of the 
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inversion states into the ground states of the system. Offdiagonal factors become 
significant when the difference between the inversion and ground levels (the inversion 
splitting) becomes comparable in magnitude with the secondader terms such as 
spin-orbit coupling. 

Formulae to calculate the second-order off-diagonal reduction factors for any 
symmetry of perturbation are also given in Poliger er al ((1991), equation (2.30)). 
For the example of spin-orbit coupling, the result for the T@ t2 problem is given 
in Bates el a1 ((1991a), equation (5.6)). Again, spin-orbit coupling is the dominant 
perturbation in the T@(e+ t2) problem. Thus with a T, vibronic ground state and 
a Tz vibronic inversion state we have I' = T,, R = Tz and T, = T k  =TI and the 
secondader off-diagonal reduction factor Iic)(rl( rk@r,lCL) for spin-orbit coupling 
becomes 

where f ( A )  = XT,(A)XTt(A) and 

Also, the 6r coefficient is 

[: :]=o for M = A , , A , .  

Thus only second-order off-diagonal reduction factors with M = E, TI and T2 are 
non-zero. 

After substituting specific values for the remaining CG coefkients, they are given 
by 
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As in the case of the other reduction factors, no simple expressions for the 
asymptotic l i t  of the off-diagonal reduction factors can be obtained for the strong- 
coupling limit. They are likely to become important whenever the tunnelling level 
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approaches the ground vibronic state such that the energy gap 6 is of the same size 
as the perturbation under consideration. Referring to figures 1 and 2 in Hallam er a1 
(1992), this is likely to arise for ICT, IC, greater than about 1.75hw in some cases 
for a relatively large perturbation such as spin-orbit coupling. 

6. Application to the CaAs:C?+ system 

The best known example of a strongly coupled orthorhombic rr system is probably 
that of GaAs:CF?+ which has a 4T, ground state in tetrahedral symmetry. It was first 
identified by Krebs and Stauss (1977) from their electron paramagnetic resonance 
(EPR) experiments. Thermally detected p) EPR experiments were undertaken later 
from which further data related to the centre were obtained (Parker el a1 1990). It 
was supposed that the 4T2 inversion level had a sulficiently high energy that its effect 
on the ground vibronic state could be ignored in these experiments. Thus from the 
frequency dependence of the resonances and the isofrequency curves, it was shown 
that aU the EPR data could be accounted for by an effective Hamiltonian for the VI 
vibronic ground state and written in the form (Parker ef ul 1990) 

3 1 ~ = a ( I . S ) + b ( l . S ) t + c ( E l , E s S +  EIES)+'H,,,i, 
+ pB{(ge + f ) ( B  . S) + 4 l .  B) + e [ ( l .  S ) ( l .  B) + ( 1 .  B ) ( l .  91 
+ f ( E f , E f B  + E,E, ) }  (6.1 ) I S B  

where a, b and c are the coefficients of the terms that describe first- and second- 
order spin-orbit coupling and d, e and j are the coefficients of the Zeeman terms 
and ge = 2.0023. Also the operators are given by 

Ef,  = $[311 - 1 ( 1  + l ) ]  E;B = 1[3B,S,  - B. SI etc. (6.2) 

The fourth term in (6.1) represents the strain that pushes one of the six orthorhombic 
wells below all the others. For the [ l l O ]  well we have 

xH,,, = V[(sinr)Ef, + fv'3cosr)(l,l, t ly[z)l (6.3) 

where V is the effective coupling constant and y is the angle of the strain in the 
Qe - Q6 strain plane. 

All the EPR spectra arise from transitions within the Zeeman-split levels of the 
lowest Kramers doublet from 'HeN. The values of the parameters that fitted the EPR 
data were found to be 

a = 6 S z k  0.3 cm-' 

c=-(8+3)xlO- 'cm-'  

e = (3.5* 1.0) x cm-' f = (1.35 * 0.3) x cm-' 
y = 1.23 i 0.01. 

The orthorhombic nature of the EPR spectra was explained by assuming that random 
strains stabilize the system into one of the six orthorhombic wells. The resultant 
spectrum is then a superposition of spectra from all six sets of sites such that 

b = -(2.05 f 0.3) x lo-' at-' 

d = (1.6 f 0.4) x lo-* cm-' 
(6.4) 
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the isofrequency CUIV~S each display orthorhombic symmetry corresponding to one 
particular site. This occurs if IVI > 45 cm-' and negative. 

Parker et al (1990) showed that there were two main contributors to each of 
the non-Zeeman terms in 'Hem. One arises from the coupling of the excited *E 
orbital state, at an energy E, to the ground 4T, state via the one-electron spin-orbit 
coupling (of parameter 5' but modified by the JT effect through the introduction of 
h t -o rde r  reduction factors). The second comes from the second-order JT reduction 
factors from the spin-orbit coupling which is the main theme of this paper. However, 
equation (6.1) has a different form from that of (4.1) and thus the second-order 
JT reduction factors given in (4.1) must be cast into the form of equation (6.1). 
"king these points into consideration, and ignoring the Zeeman parameters which 
are known only rather poorly, we arrive at the relations 
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A1 4- CIA = 6.55 A, + C Z X  = -0.21 A3 + CSA = -0.08 

where 

6A1 = [Kii(Tz) - Zh';i(Tl)]P C, = k2(A + $ETA + klC?i(T,) 

3A2 = Kfi(T2)P c, =k2BrA (6.5) 

9A3 = -2[2Kfi(E) + K;i(T2)]P 

and where K;l(T,) is the first-order reduction factor of T, symmetry etc (Dunn and 
Bates 19S9b), P = [''/E and k (= - 3 / 2 )  is the isomorphic constant. (Note that a 
factor of -2/9 was omitted from the expression for A ,  given in Parker et a/ (1990) 
although the factor was included in the subsequent analysis.) 

In principle, from a computer analysis of the values of the first-order reduction 
factors as a function of 1cT/hw, as given in D u m  and Bates (1989b) and of the 
secondader reduction factors givcn here in figures 1 and 2, it should be possible 
to find a value for I i , / h y  which simultaneously satisfies all of equations (6.5). 
Unfortunately the equations are ill-conditioned in that small changes in the parameter 
values quoted above and/or the constants generate instabilities in the solutions. We 
h o w  from other calculations that, for example, anisotropy has marked effects on the 
secondader reduction factors particularly in the region of lCT/huT where we expect 
a solution. Thus both our formulae and our data are not sufficiently accurate for a 
unique value of ICT/% to be obtaincd in this way even allowing for variations in 
the A, q and ICBL values. However, solutions to the problem are clearly possible for 
KT/hu,. in the range 1.2-1.7 for q = 1.2 or 0.8 and IC,, = -0.04 that are physically 
acceptable but I C T / h y  cannot be determined more precisely. Thus our calculations 
of second-order reduction factors with the cubic combinations of the excited states 
has still not enabled us to obtain a real fit to the data for this system without the 
availability of further experimental data. 

It is apparent that, with this range of values of l i T / h q ,  the main contributions 
come from the secondader terms as the first-order factors K;i(T2), IC;i(E) and 
K;i(T,) are very close to their limiting values of 0.5, 0.25 and 0 respectively. Also, 
this range of values for ICT/h+ strongly supports the statement in Parker er a1 
(1990) that, for the GaAs:C?+ system, the JT effect is orthorhombic and in the 
'strong-coupring' regime and that the main magnetic properties of this virtually unique 
system arise from the close proximity of the 'E state to the 4T, ground state. 

C, = k z ( E E  - & ) A  
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It is interesting to note also that reference was made in Parker et ai (1990) to an 
estimate of KT from a value for the inversion splitting (6 = 23 cm-') obtained from 
the phonon scattering experiments of Challis et ai (1982), Ramdane et a1 (1983) and 
Hamdache et nl (1982). A value of K T / 4  = 1.5 was given which is at the centre 
of the range found here. Unfortunately, it is not possible to combine the data for 6 
with those from EPR to determine KT/tW, uniquely because additional approximate 
formulae would be added to the problem! 

Finally, the range of values for IfT/% deduced above are consistent with the 
neglect of the T, inversion level in writing down the effective Hamiltonian (6.1) in 
terms of an I = 1 orbital operator only. If  this latter condition had not been met, it 
would have further complicated the analysis which emphasizes again the uniqueness 
of the GaAs:CP+ JT system. 

7. Summarj 

An analytical method of calculating the second-order reduction factors for the strongly 
coupled T@(e+ t,) JT system has been describcd. It gives results that are more 
accurate than those given previously by Dunn and Bates (1989b) because the  excited 
states have cubic symmetry and they are thus more nearly orthogonal to each other. It 
is found that the use of symmetry-adapted states gives smaller maximum and minimum 
values than the corresponding reduction factors obtained using the simple excited 
states localized in the wells. This system represents another important  system after 
those of T@e and T@ t2 but it is much more complicated than either and especially 
T@e. Such orthorhombic systems are more common in tetrahedral symmetry because 
the coupling to t2 modes for T, orbital states is often as large as the coupling to the 
e modes. It is interesting to note that, even in T, symmetry. a T, orbital state 
is invariably more strongly coupled to e than to t, modes. Expressions have also 
been obtained for the off-diagonal reduction factors for T@ (e + t,) which, although 
not used specifically here, may be important in describing the mixing between the 
vibronic ground and excited states by perturbations additional to those of spin-orbit 
coupling. The example of GaAs:Cr3f has been chosen to illustrate the importance of 
secondader JT reduction factors in obtaining an accurate effective Hamiltonian for 
orthorhombic systems. 
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